
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2502
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

An Aggregated Utility Function for Negotiation to
Model the Preference Ordering of Services in

Cloud Computing

Ariya T.K, Christopher Paul, Dr S.Karthik

Abstract— Utility function is generally used to represent an agent’s level of satisfaction in terms of price and time. The integration of
negotiation with SLA gains much importance. Negotiation activities are needed for establishing contracts and resolving differences between
providers and consumers in allocating cloud resources. Intelligent agents providing negotiation support. Controlling the negotiation
flow is important for various businesses interested in the SLA. Cloud providers will need to consider and meet different QoS parameters of
each individual consumer as negotiated in specific SLAs. This paper explains negotiation technique and simulation of cloud computing
systems.

Index Terms— Cloud computing, Price Negotiation, Scientific workflows, Time Negotiation

—————————— ——————————

1 INTRODUCTION
For various businesses, software as a negotiated service is achiev-
ing popularity due to technical reasons. This paradigm includes
Software as a Service (SaaS), Infrastructure as a Service (IaaS) and
Platform as a Service (PaaS). In traditional system, software pur-
chased according to a license. The process of negotiation depends
on an agreement between the service customer and the service
provider. In service oriented computing flexibility become neces-
sary for an open market.

 Negotiation protocols which determine the rules and
they are used for collecting negotiating parties. Various styles
such as single round to multi round negotiations have been ob-
served. To maximize a utility function SLA is evaluated. In a mar-
ket, service advertisement done by provider and based on the
interest customer’s shortlist providers. The provider provisions
the agreed upon resources and the customer starts to use the ser-
vice from the time SLA comes into effect [10].

Cloud computing is an internet based computing solu-
tion which provides shared resources. On demand Allocation of
resources is flexibility of cloud computing. Grid computing and
utility computing combined together in cloud computing. Cloud
computing is a way of computing where service is provided
across the internet using the models and levels of abstraction
[1][11].Grid computing is sharing of coordinated resources in a
dynamic environment in which multi-institutional organizations
involved.

 An agent negotiates over both price and time in a dis-
tributed negotiation mechanism. Amazon’s Elastic compute cloud
used for combinatorial auctions and the fixed price models for
achieve high social welfare [12]. A very challenging task for the
consumers is simultaneously access several resources according to
both providers and consumers needs [2].

For allocating resources according to the customers and providers
needs require negotiation activities.

2 Background

There are various negotiations which can occur in cloud compu-
ting. Based on the resource allocation policies various negotiation
techniques can be used such as workflow level and task level[14].
This section discusses closely related works on Grid resource ne-
gotiation, concurrent negotiation, meta negotiation and SLA nego-
tiation.

2.1 Grid Resource Negotiation:

 A two-phase bargaining protocol used for Grid resource
negotiation [3]. The negotiation protocol consists of
 2.1.1 A distributive negotiation phase, in which self-interested
agents adopt heuristic strategies to iteratively exchange bids
(make proposals and counterproposals) among themselves.
2.1.2 An integrative negotiation phase, in which agents attempt to
find joint gains while trying to maintain the utility distribution
outcomes from the distributive negotiation phase.

2.2 Concurrent Negotiation

 One-to-many negotiation model consists of one buyer
and multiple sellers, and the buyer has a number of sub negotia-
tors [4]. There are multiple negotiation threads, and in each nego-
tiation thread, each different sub negotiator conducts a one-to-one
negotiation with a different seller.

2.3 Meta Negotiation

 A service provider publishes descriptions and conditions
of supported negotiation protocols into the registry. Service con-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2503
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

sumers perform lookup on the registry database by submitting
their own documents describing the negotiations that they are
looking for [5]. The registry discovers service providers who sup-
port the negotiation processes that a consumer is interested in and
returns the documents published by the service providers. After
an appropriate service provider and a negotiation protocol is se-
lected by a consumer, negotiations between them may start ac-
cording to the conditions specified in the provider’s document
[13].

2.4 SLA Negotiation

 Preliminary requirements, which are relevant to support
negotiation activities into the Cloud, is the definition of QoS pa-
rameters for existing service. QoS parameters are necessary to fill
the services request in order to negotiate the Cloud, describe the
Cloud offer, match the compliant services and build the best
available solution, define the SLA and monitor the service levels
[6].

 SLA negotiation with many Cloud providers for search-
ing for available Cloud services, compliant with user needs,
checking trustiness of providers, deciding with whom to negoti-
ate, negotiates the best price for the same offer by different pro-
vider, negotiating of multiple SLAs with different providers and
to overcome the lack of one compliant offer by a single provider
[15].

 Cloud service consumer deals with business objectives,
preferences and requirements. At the same time service providers
default terms and restrictions [16]. Then both consumer broker
and provider broker negotiate each other.

3 Scientific Workflow
 Scientific workflows in domains such as high-energy
physics and life sciences utilize distributed resources in order to
access, manage and process large amount of data from a higher-
level. in the cloud stack are Software-as-a-Service providers who
offer end-users with standardized software solutions that could
be integrated into existing workflows. We start by reviewing ex-
isting solutions for workflow applications and their limitations
with respect to scalability and on-demand access [7]. This enables
workflow management systems to readily meet Quality-of-
Service (QoS) requirements of applications, does not need ad-
vance reservation of resources in global multi-user Grid environ-
ments.

3.1 Workflow Design

 Workflow design finds how workflow components can
be defined and composed.

3.1.1 Workflow Structure

 A high-level architectural view of a Workflow Manage-

ment System (WfMS) utilizing cloud resources to drive the execu-
tion of a scientific workflow application. For instance, a policy for
scheduling an application workflow at minimum execution cost
would utilize local resources and then augment them with cheap-
er cloud resources if needed, than using high-end but more ex-
pensive Cloud resources [8].

 A policy for scheduled workflows to achieve minimum
execution time would always use high-end cluster and Cloud
resources, irrespective of costs.

3.1.2 Workflow Model

 Workflow model is also called as Workflow specification
defines a workflow including its task definition and structure
definition. It consists of two types namely, abstract and concrete.
In the abstract model[18], a workflow is described in an abstract
form.

 3.1.3 Workflow Composition

 The objectives for modeling and executing a workflow
on Clouds are design an execution model expressed in the form of
a workflow, such that multiple distributed resources can be uti-
lized. Parallelize the execution of tasks for reducing the total
completion time[9].

 Dynamically provision compute resources needed for
timely completion of the application when the number of tasks
increases. Repeatedly carry out similar experiments as and when
required. Manage application execution, handle faults, and store
the final results for analysis.

 When more tasks began completing as a result of adding
new resources, the workflow engine was able to submit additional
tasks for execution.

As demonstrated in this document, the numbering for sections
upper case Arabic numerals, then upper case Arabic numerals,
separated by periods. Initial paragraphs after the section title are
not indented. Only the initial, introductory paragraph has a drop
cap.

4 CITATIONS

4 MODULE DESCRIPTION

4.1 Developing the Price Utility Function

 In this module develop a price utility function. Normally
utility function U(x) represents an agent’s level of satisfaction for
a negotiation outcome x. Since each Cloud participant has differ-
ent preferences for different prices and time slots, a price utility
function, a time-slot utility function, and an aggregated utility
function are used to model the preference ordering of each pro-
posal and each negotiation outcome. Price Utility Function
whereas consumers prefer the cheapest price for leasing a service,
providers want to sell their services at the highest prices.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2504
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Let IPC and RPC (respectively, IPP and RPP) be the
most preferred (initial) price and the least preferred (reserve)
price of a consumer (respectively, provider) agent. Let P be a
price that both agents reach an agreement. Min is the minimum
utility that a consumer and a provider receive for reaching a deal
at their respective reserve prices. To differentiate between not
reaching an agreement and reaching an agreement at the reserve
price, uP min is defined as 0.01. If a consumer or a provider can-
not reach an agreement before its negotiation deadline, both
agents receive a utility of zero since not reaching an agreement is
the worst possible outcome. The range of the consumer’s and
provider’s price utility functions is {0} [uP min, 1].

4.2 Implementation of time slot utility function

 In this module, a novel time-slot utility function is de-
signed to model consumers’ and providers’ preferences for differ-
ent time slots. In general, a consumer can have multiple sets of
acceptable time-slot preferences A provider’s time-slot prefer-
ences are based on the following: 1) Service demand (it is more
difficult to schedule jobs at a time when the demand is high); 2)
temporal ordering (scheduling jobs at the earliest possible time is
preferred because computing resources devaluate with time); and
3) fitting job size (to optimize resource utilization). Three formu-
las are used to characterize service demand, temporal ordering,
and fitting job size.
 A function consisting of a weighted combination of
these three formulas is used to prioritize all the available time
slots. Then, a mapping function assigns a priority value to each
time slot. Finally, the time-slot utility function transforms the
priority value of a time slot into a number from 0 to 1

4.3 Implementing the Consumer time-slot utility function

 In this module a consumer generally describes different
preferences for multiple sets of time slots. The time-slot utility
function of a consumer consists of partial functions for modeling
preferences for different time slots. A consumer can select multi-
ple reference points. Each reference point Txm is assigned a utili-
ty value Uxm to represent the time-slot preference. A reference
point is used to generate the xth partial function of the time-slot
utility function.
 Each time slot is associated with a utility value, and the
time-slot utility values are assigned between uT min and 1 ac-
cording to the preference priority. uT min is the minimum utility
that the consumer receives for reaching a deal at its worst (or
least preferred) time slot within FTC and LTC—the range of
available time slots for a consumer. FTC and LTC are the indices
of the first and last time slots selected by the consumer, respec-
tively. For the purpose of experimentation, uT min is defined as
0.01. A consumer receives a utility of zero if it cannot reach an
agreement with the provider on a mutually acceptable time slot
before its negotiation deadline

 4.4 Implementation of Provider’s time-slot utility function

 In this module the providers may prefer to allocate jobs

to time slots where a low service demand (or resource load) is
expected (when there are many simultaneous requests, it is harder
to schedule jobs because of limited resource capacities); to their
earliest available time slots (since computing resources devaluate
with time, unused resources lead to loss of revenues for the pro-
viders); and to the time slots at which the job sizes can be ac-
commodated to optimize resource utilization.

 A provider prioritizes its time-slot preferences based on
expected service demands, and the preference for each time index
T is associated with a time-slot priority VD (T). FTP and LTP are
the indices of the first and last time slots selected by a provider,
respectively. Based on the demand pattern, a provider can assign
a lower time-slot priority (i.e., low VD (T)) to the peak time since
providing services at a time slot with a lower priority can be
compensated by charging a higher price. The provider can assign
a higher priority (i.e., high VD (T)) to time slots when low ser-
vice demands are expected and charge a lower price for these off-
peak time slots to provide incentives for consumers to run their
applications at time slots with low service demands.

4.5 Implementing the negotiation strategy

 In this module negotiation is takes place on both price
and time slot, generating a counterproposal can be making either
a concession or a tradeoff between price and time slot. Hence, an
agent’s strategy for multi-issue negotiation is implemented using
both the following: 1) a tradeoff algorithm and 2) a concession
making algorithm.

 New Tradeoff Algorithm called a “burst mode” pro-
posal, which is designed to enhance both the negotiation speed
and the aggregated utility. In the burst mode, agents are allowed
to concurrently make multiple proposals, with each proposal con-
sisting of a different pair of price and time slot that generates the
same aggregated utility. These concurrent proposals differ from
each other only in terms of the individual price and time-slot util-
ities

 The concession-making algorithm determines the
amount of concession total for each negotiation round, which
corresponds to the reduction in an agent’s expected total utility.
Agents in this work adopt the time-dependent strategies to deter-
mine the amount of concession required for the next proposal.

4.6 Decision-making process

 In this module resources negotiation developed between
Cloud Coordinators. The party that sends the message is defined
the operation type, whereas decision is made by the party that
receives the message. Therefore, BUY means that the sender of
message wants to buy resources and SELL means that the sender
wants to sell resources. Offer type is defined by the sender based
in Alternate Offers operations. Data: offer: Alternate Offers mes-
sage received from a remote Cloud Coordinator. Data: required
Resource: description of resource under negotiation, defined in
the initiate Offer message received in the beginning of negotia-
tion.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2505
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.7 Performance Measure

 To evaluate the performance of the burst mode using the
PTN mechanism, we used the following as the performance
measures: 1) negotiation speed and 2) average total utility of the
negotiating pair. The negotiation speed is a function of the num-
ber of negotiation rounds spent on negotiation. Average total
utility is the level of satisfaction in terms of price and time slot
with the service to be provided.
Algorithm 1 Decision-making process

1 Get resourceValue
2 if offer.type = SUBMIT then

if(offer.operation=BUY^ offer.value resourceValue)
(offer.operation = SELL ^

offer.value resourceValue) then /* good offer: accept it.
*/

4 send ACCEPT;
5 end
6 else not a very good offer: try to negotiate.
7 send COUNTER(resourceValue);
8 end
9 end
10 else if offer.type = COUNTER then
11 if (offer.operation = BUY ^ (offer.value
 <resourceValue ^offer.value > lastOffer))
 _(offer.operation = SELL ^ (offer.value > resourceValue ^
offer.value < lastOffer))
 Then party upgraded its offer, but it is still not good
enough: try to negotiate.
12 send COUNTER(resourceValue);
13 end
14 else
 party did not upgrade its offer then reject.
15 send REJECT;
16 clean(requiredResource);
17 end
18 end
19 else
 Party rejects our counter: finish process.
20 clean (requiredResource);
21 end

5 CONCLUSION
We have presented negotiation techniques is capable to
prevent the loss in price for both providers and customers.
The final negotiation result will be either the compro-
mised QoS requirements or a failed submission of the
cloud workflow instance. A Scientific Workflow System
provides mechanism to gracefully handle the resource ne-
gotiation. This paper discussed the negotiation techniques
in cloud computing and focus on scientific workflow
based on price and time utility functions and simulation
of cloud computing systems.

REFERENCES
[1] Edwin, Philipp Wieder,A Generic Platform for Conducting SLA

Negotiations
[2] Kwang Mong Sim, Senior Member, IEEE, and Benyun Shi, 2010,

Concurrent Negotiation and Coordination for Grid Resource
Coallocation, IEEE Transactions on Systems, Man, and Cyber-
netics: Cybernetics, Vol. 40, No. 3

[3] Seokho Son and Kwang Mong Sim, 2012, A Price- and-Time-
Slot- Negotiation Mechanism for Cloud Service Reservations,
IEEE Transactions On Systems, Man, And Cybernetics—Part B:
Cybernetics, Vol. 42, No. 3

[4] Saurabh Kumar, Rajkumar Buyyaa, Howard Jay Siegel,
2010,Time and cost trade-off management for scheduling paral-
lel applications on Utility Grids, Future Generation Computer
Systems 26 1344_1355

[5] Bo An, Victor Lesser, David Irwin, 2008, Automated Negotiation
with Decommitment for Dynamic Resource Allocation in Cloud
Computing4, DOI: 10.1109/ ICCCNET.2008. 4787663 pp. 1-9,
IEEE explore

[6] Ivona Brandic, Srikumar Venugopal, Michael Mattess,and Raj-
kumar Buyya, Towards a Meta Negotiation Architecture for
SLA-Aware Grid Services

[7] DivyaJyothi.Madhe, D.R.Ingle, 2012, Dealer Agent based Cloud
Ecommerce Framework” International Conference on Advances
in Communication and Computing Technologies (ICACACT)

[8] Mario Macıas, J. Oriol Fito and Jordi Guitart, 2010, Rule-based
SLA Management for Revenue Maximisation in Cloud Compu-
ting Markets, CNSM

[9] Mario Macías, Jordi Guitart,A Genetic Model for Pricing in
Cloud Computing Markets

[10] Rabi Prasad Padhy, Dr. Manas Ranjan Patra,Dr. Suresh Chan-
dra Satapathy, 2012 ,SLAs in Cloud Systems:The Business Per-
spective”,InternatIonal Journal ofComputerSCIenCe and tech-
nology Vol. 3, ISSue1

[11] Rajkumar Buyya, Chee Shin Yeo and Srikumar Venugopal,
Market- Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities

[12] Rajkumar Buyya,Rajiv Ranjan, Rodrigo N.C ,InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for
Scaling of Application Services

[13] N.Malarvizhi, Dr.V.Rhymend Uthariaraj. (2009): A Minimum
Time to Release Job Scheduling Algorithm in Computational
Grid Environment, IEEE Fifth International Joint Conference on
INC, IMS, IDC.

[14] Sameer Singh Chauhan, R. C. Joshi, (2010), QoS Guided
Heuristic Algorithms for Grid Task Scheduling, International
Journal of Computer Applications (0975 – 8887), Volume 2 –
No.9

[15] He X, Sun, X., Laszewski, G.V., (2003). Qos guided min-min
heuristic for grid task scheduling, Journal of Computer Science
and Technology 18, 442-451.

[16] Q. Zheng, B. Veeravalli, and C. Tham.(2007): Fault-tolerant
Scheduling for Differentiated Classes of Tasks with Low
Replication Cost in Computational Grids, ACM, HPDC‟07, June
25–29, 2007, Monterey, California, USA.

IJSER

http://www.ijser.org/

	1 Introduction
	4 Citations
	5 Conclusion
	References

